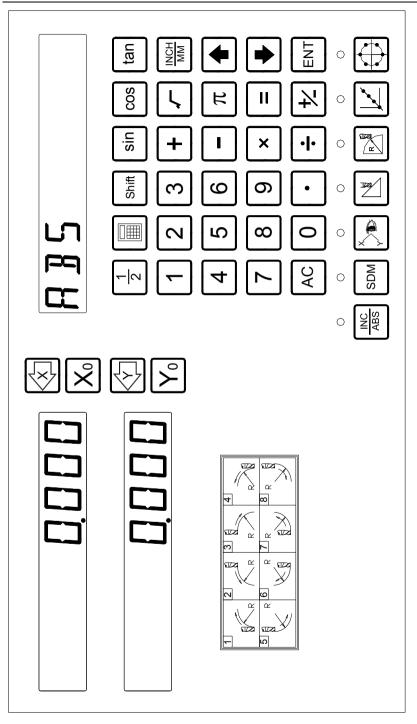
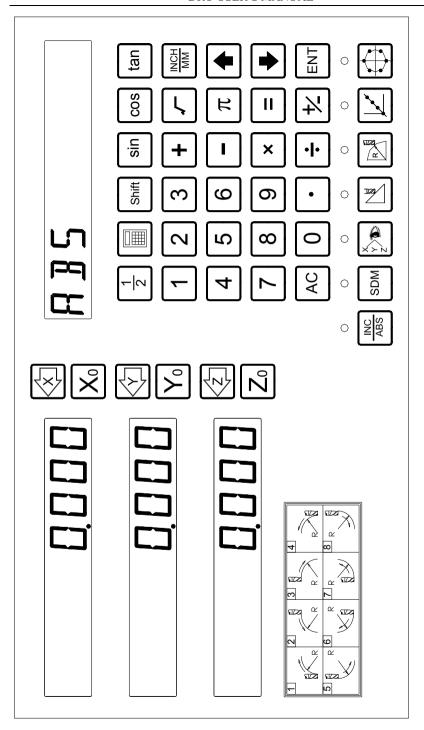
DIGITAL READOUTS

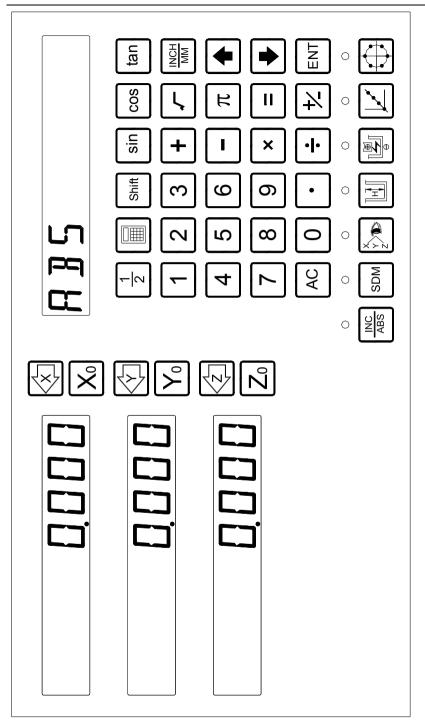
Operation Manual

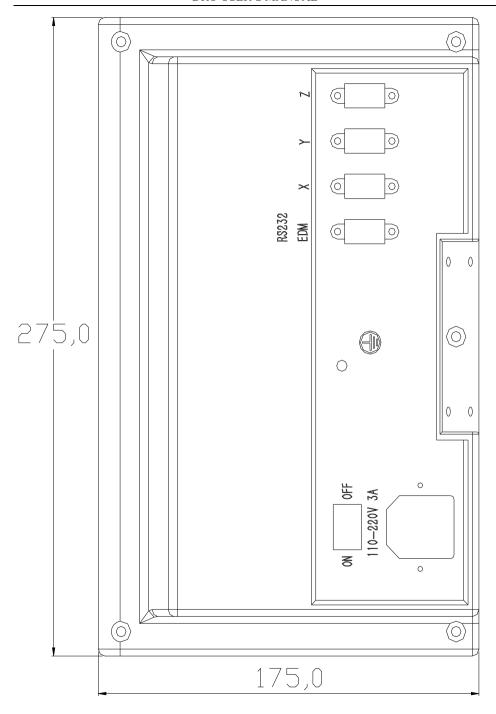
DRO for 2 axes

DRO for 3 axes


DRO for EDM(Little Pore)


Contents


DRO USER'S MANUAL


7.5	Encoder compensation	39
7.6	Toggle Between R/D Display Mode(R – D MODE)	39
7.7	Setting Z axis Dial(Z DIAL)	40
7.8	Setting the Resolution of Scale(RESOLUTE)	40
7.9	Setting the EDM Mode (EDM MODE)	41
7.10	Setting the Input Mode in SDM Coordinate (SDM DIR)	41
7.11	Enable/Disable EDM Depth Compensation (DEEP.COMP)	41
7.13	Setting the Slope Machining Parameter (SLOP.MODE)	41
7.14	Toggle between Linear Scale and Rotary Encoder(AXIS.TYPE)	42
7.15	Step Mode of ARC(STEP.MODE)	42
7.16	Angle Display Mode (ANGL.MODE)	43
7.17	Angle display type(ANGL.TYPE)	43
7.18	Load default setup (ALL CLS)	43
Chapter 8	TROUBLE SHOOTING	45

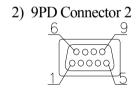
Chapter 1 Brief Introduction

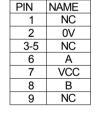
DRO USER'S MANUAL

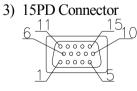
Description of Key Function

KEY MARK	FUNCTION
X ₀ Y ₀ Z ₀	Zero selected axis.
	Select axis to operate.
INCH MM	Inch/Metric Switch
$\frac{1}{2}$	Center Finding
INC. ABS	ABS/IINC Switch
SDM	SDM Switch
0_9	Numeric Key
⊡	Decimal Point
1/2	+/- Sign
ENT	Enter
AC	Clearing
	Temporary Quit (Leave processing temporarily to return normal display state.)
	Calculator
Shift	Calculate inverse trigonometric unction in calculating function. Enter No. of SDM coordinate.
sin cos tan	Trigonometric Function
+ - × ÷ =	Add: Decrease: Multiple: Divide
<u></u>	Square root or square.
π	Enter circumference ratio.
H	Set parameters of EDM. (only for DRO of EDM)
	Enter EDM processing. (only for DRO of EDM)

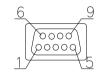
DRO USER'S MANUAL


KEY MARK	FUNCTION	
	Process holes displayed equally on a circle.	
	Process holes displayed equally on a line.	
	Simple R cutting function (only for DRO of 2 axes \cdot DRO of 3 axes)	
Na Na	Process a slope. (only for DRO of 2 axes · DRO of 3 axes)	
+	Stroll up or down to select.	


1.1 Interface


A Linear Scale Interface

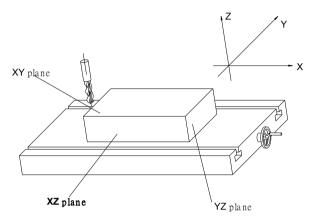
1) 9PD Connector 1



PIN	NAME
1	+5V
2	0V
3	Α
4	В
5-15	NC

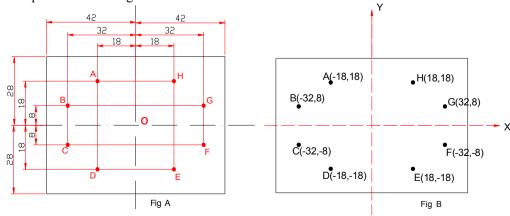
B RS232 Interface

PIN	NAME	
1	NC	
2	TXD	
3	RXD	
4	NC	
5	GND	


C EDM Interface

PIN	NAME
1	NC
2	COMMON
3	NORMAL CLOSE
4	ST+
5	IN+
6	NORMAL OPEN
7	NC
8	ST-
9	IN-

1.2 Coordinate System


DRO is an instrument which can measure position of work piece when processing. Coordinate system must be definite first for more efficiency and accuracy.

In horizontal plane, the X axis is parallel with the operator; Y axis is perpendicular to X axis. Z-axis is perpendicular to horizontal plane. Positive direction of axis is set as the figure. It also can be changed as customer.

The value of one point position is the distance relative to the origin of coordinate.

For a work-piece as Figure A, the value of each point position is as the Figure B when point O is the origin of coordinate.

Chapter 2 BASIC OPERATION

2.1 Power on

Function: Power on then DRO enter normal display state.

It can memorize the following parameter after power on.

- A. The scale position where power off;
- B. ABS/INC/SDM mode;
- C. Metric/Imperial mode;

NOTE: Normal display state

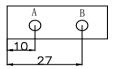
The state DRO automatically enters after on or exit from "STEUP". In normal display state, X window, Y window, Z window displays the current value of X axis, Y axis, Z axis separately. The message window displays "ABS", "INC" or "SDM XXX" (indicate the Number of SDM coordinate, with a range of 000—499). When user switch among ABS/INC/SDM, MM/INCH, DRO will not leave this state. When you enter Calculator function, input data to X (or Y or Z) axis, special function (BHC: BHL: ARC: SLOPE PROCESSING and EDM function): DRO is not in the normal display state.

2.2 Zeroing

Function: Zero the designated axis in normal display state. Zeroing is used to set the current point as datum point.

NOTE:

- 1. The axes can be zeroed in ABS/INC/SDM states;
- 2. When zero in ABS coordinate, INC display value is cleared simultaneously. Zeroing in INC coordinate has no effect on ABS and SDM display value.
- 3. Press the zero key of the same axis will cancel above zero operation if the scale kept still after zero.


2.3 Preset Data to designed axis

Function: Preset a value to current position for a designed axis in normal display state.

NOTE:

- 1. Axis can be preset in ABS/INC/SDM state.
- 2. In SDM state, input mode "0" means that the display value is equal to the enter value; input mode "1" means that the display value is equal to the negative of enter value.

Example: Machine the work-piece from the A to B

STEPS:

- 1. Move the machine table, and align the lathe tool to A.
- 2. Return normal display state;
- 3. Press 1 > 0 > ENT, which means the preset data is "10";

 If incorrect value is inputted: press AC to cancel and input again;

 NOTE: If in SDM state and SDM input mode is "1", 12 needn't be inputted.

NOTE: If in SDM state and SDM input mode is "1", $\frac{|\Sigma|}{|\Sigma|}$ needn't be inputted Otherwise $\frac{|\Sigma|}{|\Sigma|}$ must be inputted.

- 4. Moving the machine table until "27.000" is displayed in X window. Now it is the position of B.
- 5. Y axis, Z axis, can be preset in the same way.

2.4 Toggle display unit between mm and inch

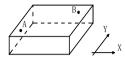
Function: Length can be displayed either in "mm" (metric) or "inch" (imperial).

Display unit can be toggled between mm and inch.

Example: Display value toggle from mm to inch

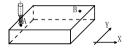
STEPS:

1. DRO returns normal display state.


Press the display unit is inch now.

2. It is invalid to toggle between mm and inch while axis is encoder.

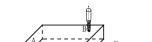
2.5 Mid-point Calculation

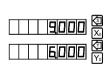

Function: Set the center of work piece as datum by halving the displayed value.

Example: Set the center of rectangle as datum as the right figure.

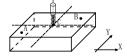
STEPS:

- 1. Place the work piece on the machine table
- 2. DRO returns normal display state, move machine table and align the lathe tool with point A; Press to zero X axis, press to zero Y axis;





3. Align lathe tool with point B by moving machine table;


Press $\frac{1}{2}$, \bigotimes in turn to halve the X axis display value; Press $\frac{1}{2}$. \bigotimes in turn to halve the Y axis display value;

4. Move the machine table until "0.000" is displayed in X window and Y window. The position (where the lathe tool is) is the work-piece's center.

NOTE: 1. If you do other operation after axis half, please press $\frac{1}{2}$, X_0 will cancel above operation, and X-axis display value return to normal.

2. It is invalid to mid-point calculation while axis is encoder.

2.6 Absolute / Incremental / 500 groups SDM

Function: DRO has 3 display modes: the absolute mode (ABS); the incremental mode (INC) and 500 groups Second Data Memory (SDM) with the range of 000 to 499.

- 1. Zero point of work-piece is set at the origin point of ABS coordinate;
- 2 The relative distance between datum of ABS and SDM remains unchanged when ABS datum is changed.
- 3. If one point in ABS is zeroed, the point in INC is zeroed automatically; yet if one point in INC is zeroed, the point in ABS will remain unchanged.

I. toggle among ABS/INC/SDM coordinate

These three display modes can be changed only in normal display state.

Press key or for the display modes can be changed between ABS, INC and SDM

II. Set the new number of SDM in SDM mode

STEPS:

- 1. Enter SDM mode;
- 2. Press key message window flashes, waiting for inputting a new number of SDM;
- 3. Enter a new number. for example, enter 88.
- 4. Press or shift, then the message window stops flashing and the number of SDM is changed to 88.

III: Increase/Decrease the SDM number

DRO return normal display state with the display mode SDM, press to decrease the number of SDM by 1; press to increase the number of SDM by 1.

2.7 Clear All SDM Datum

Function: Clear the Datum of all SDM 0 - 499. After clearing, the display value in SDM coordinate is equal to the value in ABS coordinate.

STEPS:

- 1. Return normal display state;
- 2. Press and and simultaneously for 2 seconds, and the message window displays "CLS SDM" and flashes, which means it is clearing now. About ten seconds later, the clearing is completed and "CLS OK" is displayed in message window temporary and DRO return normal display state.

2.8 Filter display value

When machine a work-piece by grinder, the display value varies quickly due to the vibration of grinder. User can't see display value clearly. DRO provides display value filter function to disable the quake change of display value.

STEP:

- Enter display value filter function.
 In normal display state, press and simultaneously, enter display value filter function.
- Exit display value filter function.
 Press shift, exit display value filter function.

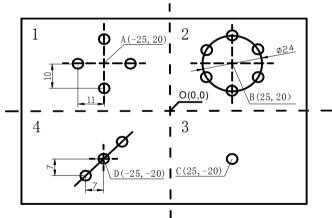
Chapter3 500groups SDM coordinate

DRO has three display modes: the absolute mode (ABS), the incremental mode (INC) and the 500 groups second data memory (SDM 0—SDM499).

ABS datum of the work-piece is set at the beginning of the processing and the 500 group SDM is set relative to ABS coordinate.

500 group SDM coordinate can be divided into several segments, and every segment stores data of one work-piece. If one segment has 20 groups SDM coordinate, DRO can be divided into 25 segments and can store data of 25 work-pieces.

SDM 000 ----- SDM 019 data of the first work-piece


SDM 020 ----- SDM 039 data of the second work-piece

.

SDM 460 ----- SDM479 data of 24th work-piece

SDM480 ----- SDM499 data of 25th work-piece

Example: The ABS datum is the center point O, the pointA, B, C, D needed processing are set as datum of SDM 000—SDM 003.

Two ways to set SDM coordinates:

- 1) Zeroing at the current point.
- 2) Presetting datum of SDM coordinate.

3.1 Zeroing at the Current Point

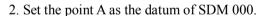
At first set the center point of the work-piece as the origin of the ABS, then align the lathe tool with point A, B, C, D by moving the machine table and zero them. It is the position to process where the "0.00" appears in X window, Y window by moving the machine table whether in ABS or in SDM coordinate.

STEPS:

1. Set the center of rectangular point O as the datum of ABS

Make line L1 parallel with X axis: line L2 parallel with Y axis.

When position lathe tool to point O

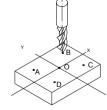

Zero X axis and Y axis in SDM 000;

Zero X axis and Y axis in SDM 001;

Zero X axis and Y axis in SDM 002;

Zero X axis and Y axis in SDM 003;

SDM 000: align the lathe tool with point A and zero X axis,



Press X₀, Y₀

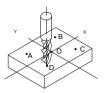
3. Set the point B as the datum of SDM 001.

In SDM 001 and align the lathe tool with point B, then zero X axis, Y axis. DRO displays as the right:

Press X₀ Y₀

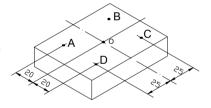
4. Set the point C as the origin of SDM 002.

In SDM 002, align the lathe tool with point G, and zero X axis, Y axis. DRO displays as the right.


Press Xo, Yo

5. Set the point D as the origin of SDM 003.

In SDM 003, align the lathe tool with point D, and zero X axis, Y axis. DRO displays as the right.


Press X₀, Y₀

- 6. Machine the work-piece according to the preset SDM coordinate;
- 7. Machine another work-piece according to the same blueprint. You only need set the center point as the datum of ABS. It is not necessary to set SDM coordinate again, as SDM can be set automatically. Point A, B, C, and D is the zero point of SDM 000, SDM 001, SDM 002, and SDM 003 respectively. Point can be machined when enter corresponding SDM coordinate and "0.000" appears in screen by moving machine table. This function can save great plenty of time in production.

3.2 Preset datum of SDM Coordinate

Compared with the way of zeroing at current point, the another way (presetting datum of SDM coordinate) can set zero point of SDM more accurately and quickly without moving the machine table.

As the figure showed right, center point is the datum of ABS, the position of point A, B,C, D is (-25, 20), (25, 20), (25, -20), (-25, -20) in ABS coordinate.

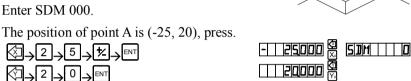
- A Enter SDM 000 and preset the position of point O as (25, -20), which means the point A is the datum of SDM 000;
- B Enter SDM 001, preset the position of point O as (-25, -20), which means the point B is the datum of SDM 001;
- C Enter SDM 002 and set the position of point O as (-25, 20), which means the point C is the datum of SDM 002;
- D Enter SDM 003, preset the position of point O as (25, 20), witch means the point D is the datum of SDM 003;

Pay attention that the preset value is negative to the actual value of position in

DRO USER'S MANUAL

ABS. If set "SDM DIR" as "1" in initial system settings, the caution is not necessary. The value DRO accepts is equal to the negative of the enter value. STEPS:

- Set "SDM DIR" as "1" in initial system settings; 1.
- 2. Set the center point of the work-piece as the datum of ABS:


Line L1 is parallel to X axis, line L2 is parallel to Y axis.

Move machine table; align the milling cutter with point O.

The machine table remain still while presetting:

Set point A as the datum of SDM 000; 3

Enter SDM 000.

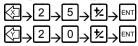
Set point B as the datum of SDM 001; 4

Enter SDM 001

The position of point B is (25, 20), press

Set point C as the datum of SDM 002; 5 Enter SDM 002.

The position of C is (25, -20), press



Set point D as the datum of SDM 003: 6

Enter SDM 003

The position of point D is (-25, -20), press

Chapter 4 SPECIAL FUNCTIONS

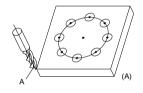
DRO has special function as the following except measuring and positioning:

Bolt Hole Circle (BHC);

Bolt Holt Line (BHL);

ARC Processing (DRO for 2 axes, DRO for 3 axes);

Slope Processing (DRO for 2 axes, DRO for 3 axes);


Electrode discharging machining (EDM, DRO for EDM);

Please refer Coordinate System (in Chapter 1) before reading this section.

4.1 Bolt Hole Circle

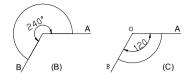
Function description:

DRO has the function of BOLT HOLE CIRCLE (BHC). This function can simplify the pressing of multiple holes which are attributed equally around the circumference of a circle. The DRO will guide operator to enter the following parameters:

RADIUS Radius of circle

ST.ANGLE Starting angle that the center of the first

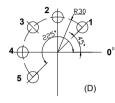
hole on the circle


END.ANGLE Ending angle that the center of the last hole

on the circle

HOLE NUM Hole number
DIRECT Angle direction.

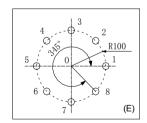
Angle has two directions: counterclockwise and clockwise. "0" indicates that it is counterclockwise from ST.ANGLE to END.ANGLE; "1" indicates it is clockwise from ST.ANGLE to END.ANGLE. As the following figure, the ST.ANGLE is 0°, END.ANG is 240°. The figure (B) illustrates the arc while angle direction is


counterclockwise; figure (C) illustrates the arc while angle direction is clockwise.

As figure (D) illustrates, machine a hole every 45 deg from

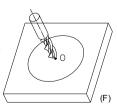
 $0^{\circ} \sim 225^{\circ}$. Parameters are as the following:

RADIUS	20
ST.ANGLE	45
END.ANGLE	225
HOL NUM	5
DIRECT	0



NOTE: If ST.ANGLE equals END.ANGLE, the holes are attributed equally around the whole circumference.

The positions of the hole center are calculated automatically after input all parameters. Press to choose the hole No. and move the machine table until the "0.000" appears in X window, Y window. It is the position to process a hole.


Example: Machine holes on circumference as the figure (E).

RADIUS	100mm
ST.ANGLE	0°
END.ANGLE	315°
HOLE NUM	8
DIRECT	0

STEPS:

 Set display unit to metric in normal state;
 Move the machine table until the machine tool is aligned with the center of the circle, then zero X axis,
 Y axis

2. Press to enter Bolt Hole Circle function.

If all parameters have been set, press to process directly.

3.	Input radius	
	Y window displays the formerly preset radius; me	ssage window displays
	"RADIUS".	
I	Press $1 \rightarrow 0 \rightarrow 0 \rightarrow \text{ENT}$ in turn.	
4.	Input ST.ANGLE	
	Message window displays "ST.ANGLE"; Y w	indow displays the former
	preset starting angle.	STI ANGLE
	Press O → in turn;	
5.	Input ending angle	
	Message window displays "END.ANGLE"; Y ν	window displays the former
	angle	
	Press $3 \rightarrow 1 \rightarrow 5 \rightarrow \text{ENT}$ in turn.	
6.	Input the number of hole.	
	Message window displays "HOLE NUM"; Y v	vindow displays the former
	number.	
	Press 8 → ENT in turn.	
7.	Input angle direction.	
	Message window displays "DIRECT", Y window	
	direction;	
	Press O → ENT in turn;	
8.	Message window displays "HOLE 1";	
	It is the position of the first hole to punch where	
	the "0.000" is displayed in \boldsymbol{X} window and \boldsymbol{Y}	
	window by moving the machine table.	_
0	A Gan Gailelin a tha Gant Itala anns a	
9.	After finishing the first hole, press	
	Message window displays "HOLE 2";	
	Move the machine table, the "0.000" is displayed	in X window and Y window.
	It is the position of the second hole.	
	NOTE: Press or to change holes number.	
10.	Process the holes $3rd-6^{th}$ in the same way.	
11.	After processing all holes, press to return n	ormal display state.
NOTE	: In the course of BOLT HOLE CIRCLE processing, p	pressing (two axes display)

(three axes display) can leave BOLT HOLE CIRCLE function temporarily and return normal display state in order to check the position. And press (two axes display) (three axes display) again to return BOLT HOLE CIRCLE function.

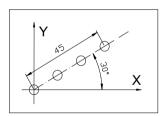
4.2 Bolt Hole Line

Function: DRO provide BOLT HOLE LINE (BHL) function. This function can simplify the processing multiple holes whose centers are attributed equally on one line.

The following parameters are needed to be input:

LINE DIS Line distance (distance between the center of first hole and

the center of the last hole)


LINE ANG Line angle (angle between the line and the positive X axis)

HOLE NUM Number of holes

DRO will calculate the positions of the hole after all the parameters have been entered. Press for to select the No. of hole and move the machine until "0.000" is displayed in X window and Y window. It is the position of hole to machine.

Example:

LINE DIS	45mm
LINE ANG	30°
HOLE NUM	4

STEPS:

1. Set display unit to metric

Move the machine table until the machine tool is aligned with the center point of the first hole, and zero X axis, Y axis.

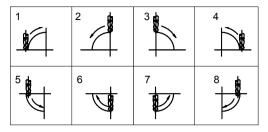
2. Press to enter BOLT HOLE LINE function;
If all parameters have been entered, press to start processing directly.

3. Input line distance.

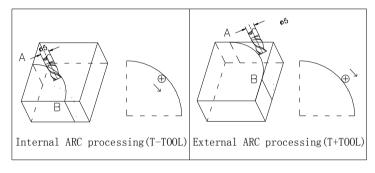
Y window displays the former preset line distance, and the message window displays "LINE DIS".

	Press $4 \rightarrow 5 \rightarrow \text{ENT}$ in turn;	
4.	Input line angle.	
	The message window displays "LINE ANG"; Y	window displays the former
	preset line angle.	LINE AND
	Press $3 \rightarrow 0 \rightarrow \text{ENT}$ in turn.	
5.	Input the number of hole.	_
	Message window displays "HOLE NUM", Y w	vindow displays the former
	preset hole number.	
	Press 4 → in turn, processing begins.	
6.	Message window displays "HOLE 1";	
	Move the machine table until "0.000" appears in	
	X window and Y window, it is the center of the	
	first hole to punch.	
7.	After finishing the first hole, press \blacksquare , and the	
	message window displays "HOLE 2";	
	Move the machine table until "0.000" appears in	X and Y window, and then
	you can punch the second hole at this point.	
	NOTE: Press to transform among holes.	
8.	Process the holes 3rd –6 th in the same way.	
9.	Press 🗵 to return normal display state when fin	ishing processing.
	NOTE:	
	In the course of BHL processing, you can press	(two axes display)

In the course of BHL processing, you can press (two axes display) (three axes display) to leave this function temporarily and return normal display of X, Y, Z axis in order to check the position which the DRO calculated. Then press (two axes display) (three axes display) again to return BHL function.


4.3 ARC Processing

This function is only for DRO of 2 axes, DRO of 3 axes.


It is waste to using numerical control lathe to process arc in the simple product or small production. This function makes it convenient to process arc with normal lathe. Parameter "MAX CUT" is the arc length each process. The smaller the MAX CUT, the more smooth the arc plane and the longer processing time.

A. Process XZ, YZ plane

There are 8 modes as the following when processing arc in XZ or YZ plane:

Tool compensation direction (when process XY plane)

Milling cutter may be flat-bottomed or arc-bottomed. If flat-bottomed, set the tool diameter as 0;

B. Process XY plane

DRO provides the above 8 modes in processing XY plane. The milling cutter is perpendicular to the machine plane. DRO has internal ARC processing and external ARC processing for each type:

External T+TOOL:

Internal T - TOOL.

Set the tool radius according to the actual milling cutter when process XY plane. Enter the following data for ARC processing:

TYPE 1 - 8 Mode of the ARC processing
T+TOOL / T-TOOL Selection between T + TOOL / T - TOOL

(This parameter is only for XY plane)

RADIUS The radius of ARC that is to be processed

TOOL DIA Tool diameter MAX CUT Feed step Example 1: R20 Process an arc AB of 90° from point A to point B as 50 the figure. Parameters are as the following: Machine plane XΥ ARC mode type 3 T + TOOL**RADIUS** 20mm TOOL DIA 5mm MAX CUT 1_{mm} STEPS: Set display unit is metric 1. Move the machine table until the lathe tool is aligned with point A, then zero 2 X axis and Y axis; AIBS | | | Enter ARC processing state: 3 Press to enter ARC processing state. If all parameters have been set: press ENT to process directly. Select machine plane; SIMP XY Press to select XY. NOTE: indicates XY plane; indicates YZ plane; indicates ZX plane; You can also press shift to switch plane among XY plane, YZ plane and ZX plane. 5. Select processing mode: Message window displays "TYPE 1-8", and Y window displays the former processing mode; TYPE 11-10 Press $3 \rightarrow ENT$ in turn to select mode 3, and then enter ARC type; Select T + TOOL mode: 6 Press + to select the external arc

processing;

DRO USER'S MANUAL

	NOTE: \bot indicates $T + TOOL$ mode (external arc processing);
	indicates T – TOOL mode (internal arc processing).
7.	Set ARC radius
	Message window displays "RADIUS", and Y window displays the former
	arc radius; Press 2 → 0 → ENT to input the arc radius.
8.	Set Tool diameter.
	Message window displays "TOOL DIA";
	Y window displays the former preset diameter
	Press 5 -> ENT in turn to enter the tool diameter.
9.	Set the feed step.
	Message window displays "MAX CUT";
	Y window displays the former feed step.
	Press $1 \rightarrow \stackrel{\text{ENT}}{\longrightarrow}$ in turn to input the feed step.
10.	Process ARC
	Message window displays "POIN 1". Process when
	the "0.000" appears in X window and Y window. $\left\langle \begin{array}{c} \left\langle \right\rangle \right\rangle$
	Then you have finished the first point. Press 🛡 to
	switch to the second point and repeat the same step. Process in this way until
	the message window displays "POIN 74". Pressing ♠or ♥ can select
	processing point.
11.	Press to exit ARC processing after machining is over.
NO 7	TE:
_	In the ABC masses massive De (two mass display) De (thus mass display) and

- - In the ARC process, pressing (two axes display) (three axes display) can leave this function temporarily to return normal display of X, Y, and Z axis in order or check the position the DRO has calculated. Press (two axes display) (three axes display) to return ARC function.
 - Processing or tan switch among the parameters in the course of the presetting parameter.

Example 2:

Process the ARC EF as the figure from point E to point F.

Parameters are set as following:

Machine plane: XZ

TYPE: 4

RADIUS: Actual radius of the arc

TOOL DIA: 0 (flat-bottomed tool)

MAX CUT: preset as the costumer

Example 3:

Process the ARC DE as the figure from point D to point E. Parameters are as the following:

Machine plane: XZ

TYPE: 6

RADIUS: Actual radius of the arc

TOOL DIA: Actual value (actual tool)

MAX CUT: preset as the costumer

Example 4:

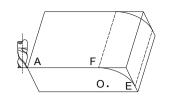
Process the ARC DE as the figure from point D to point E.

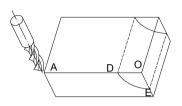
Parameters are as the following:

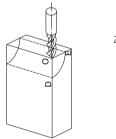
Machine plane: YZ

TYPE: 7

RADIUS: Actual radius of the arc

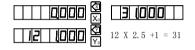

TOOL DIA: Actual value (actual tool)


MAX CUT: preset as the costumer


NOTE: For DRO of 2 axes, it is not installed with Z-axis, please press for to simulate position of Z-axis, simulate moving to the former process point, and simulate moving to the next process point.

Steps:

- 1: set "STEP MODE" as "Z STEP" in setup mode, and set Z-axis dial (default value is 2.5mm);
- 2: Before machining, at first, align lathe with the beginning point Z of R, zero Z axis;
- 3: In machining process, message window displays simulate height of Z axis, which indicates simulate height of Z axis while machining;



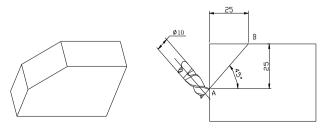
As right figure, while machining XZ plane, X window display position of X axis, X axis is finished when displaying "0.000" in X window; In Y window, the former 2 number indicates number of dial, and the following 5 number indicates scale number of dial, which means that machining to this scale for current point.

While machining YZ plane, Y window display position of Y axis, and when this window displays "0.000", which indicates the machining is finished in Y direction; In X window, the former 2 number indicates number of dial, and the following 5 number indicates scale number of dial, which means that machining to this scale for current point.

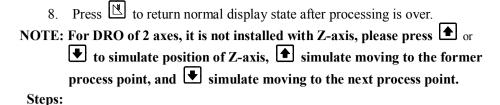
4.4 **Slope Processing**

This function is only for DRO of 2 axes, DRO of 3 axes.

Function: This function can calculate the position of every processing point automatically in processing slope. Only the following parameters need to be inputted: MAYCUT


INCLE: Set machine plane XY, YZ or XZ plane

the inclination angle of the slope INCL.ANG:


MAX CUT: the slope length each time processing

NOTE: Z STEP and MAX.CUT are defined as the figure.

DRO will calculate the position of each processing on the slope automatically when all parameters have been input. Press or to select the processing point and process until "0.000" appears in the window.

Example	e 1:							
F	Process the slope AB	as the figure. The paramete	ers are as ollowing:					
	INCLE:	XZ						
	INCL.ANG	45°						
	MAX.CUT	1mm						
STEPS:								
1.	Set display unit to metric;							
	Set the SLOP.MODE 1 in initial system settings.							
NO:	TE: If the third paran	neter isn't ZSTEP, set the SLO	P.MODE 0.					
	Move the machine table until the lathe tool is aligned with the starting point							
	A, then zero X axis and Z axis.							
	Press X_0 , Z_0 in normal display state.							
2.	VA J							
	Press ENT to start p	processing directly if all par	ameter have been set.					
3.	3. Select machine plane.							
	Press 🗗→ in t	turn to select the XY plane.	INCLIZX					
	NOTE: Press 🖾 inc	licates XY plane;						
	Press 🔄 ind	icates YZ plane;						
	Press 🔄 ind	icates ZX plane;						
	You can also press Shift	to switch among XY plane, YZ	plane or ZX plane.					
4.	Enter INCL.ANG.							
Message window displays "INCL ANG"; Y window displays the								
	INCL.ANG.	_						
	Press $4 \rightarrow 5 \rightarrow \mathbb{R}$	in turn.						
5.	Enter MAX.CUT.							
	Message window of	lisplays "MAX CUT"; Y w						
	MAX.CUT.							
	Press 1→ ENT in	turn;						
6.	Processing							
	Message window of		_					
	en press 🖢 to process the							
	next point.							
7	Press for to s	elect point						

- 1: Set Z axis dial in internal system setup;
- 2: Before machining, align the start point Z point with lathe, then set Z axis as "0.000";
- 3. While machining XZ plane, X window display position of X axis, X axis is finished when "0.000" appears in X window; In Y window, the former 2 number indicates number of dial, and the following 5 number indicates scale number of dial, which means that machining to this scale for current point. While machining YZ plane, Y window display position of Y axis, and when this window displays "0.000", which indicates the machining is finished in Y direction; In X window, the former 2 number indicates number of dial, and the following 5 number indicates scale number of dial, which means that machining to this scale for current point.

In slope processing, operator can press (two axes display) (three axes display) to exit, return to normal display, making use of this you can confirm position of DRO. And then press (two axes display) (three axes display) return to slope processing.

Chapter 5 EDM

(ELECTRICAL DISCHARGE MACHINING)

NOTE: Only DRO of EDM provides EDM function.

DRO will send out a signal and machining will stop as soon as the display value is equal to the expectant .

DRO for EDM is equipped with 7 EDM modes:

MODE 1	manual mode 1
MODE 2	automatic mode 1
MODE 3	manual mode 2
MODE 4	manual mode 3
MODE 5	manual mode 4
MODE 6	automatic mode 2
MODE 7	automatic mode 3
MODE 8	automatic mode 4

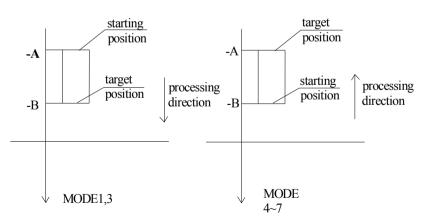
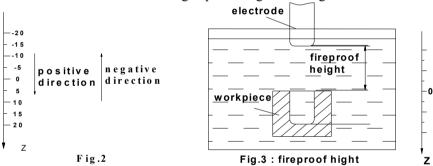


Fig 1: Difference among EDM modes


EDM mode is set in initial system settings.

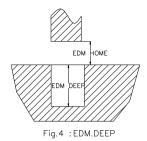
NOTE: Pay attention to the relay mode.

Table 1: the difference between 8 EDM modes: (X: No have; √: Have; ↑: Up; ↓: Down)

EDM	E4 4-44	Direction of machining as	Exit EDM after machine	Z axis
MODE	Edge detect	depth is minus	first hole	direction
1	X	↓	V	↓
2	\checkmark	No minus depth	X	↓
3	X	↓	X	↓
4	X	↑	\checkmark	↓
5	X	↑	X	↓
6	√	↓(No plus depth)	X	↑
7	√	<u></u>	X	<u></u>
8	√	No minus depth	X	<u></u>

Positive direction of Z axis is down except mode 6: which means the display value will increase with the increasing depth during machining.

DRO for EDM provides fireproof function. During EDM, charcoal will be produced on the machined surface. With accumulating charcoal, the electrode will beyond liquid level, which could lead a fire. If fireproof height is set, EDM will stop, the DRO will send an alarm and fire is avoided.


5.1 Setting EDM Parameters

The following parameters must be set before EDM is done:

- A Depth of machining (EDM DEEP)
- B Fireproof height (EDM HOME)
- C Electrode compensation (EDM.COMP if DEEP COMP is active)
- D EDM mode (EDM MODE)

- E Relay mode (RELAY MODE)
- F Disable/Enable electrode compensation (DEEP.COMP)

A, B, C can be set by pressing in normal display state; D, E, F can be set in initial system settings, and they are modified rarely. If the DEEP.COM is set as "0", electrode compensation is not taken into consideration; if it is set as "1", the value of electrode compensation can be set in parameter setting, and electrode compensation should be taken into consideration during machining.

Example:

EDM depth (EDM DEEP) 25.5mm Fireproof height (EDM HOME) 5.0mm Electrode compensation (EDM.COMP) 0.1mm

STEPS:

- 1. Set EDM COMP as "1" in initial system settings to enable electrode compensation;
 - 2. Return normal display state, and then set display unit is to metric;
 - 3. Input EDM parameters.

5: The Y window displays the value of former electrode companion;

6: Press ut to return normal display state.

5.2 EDM machining

Return normal display state: then press to start machining after all EDM parameters have been set. DRO for EDM provides 8 EDM modes to deal with different requirements.

Chapter 6 CALCULATOR FUNCTION

DRO provides arithmetic operation such as plus, minus, multiply and divide, which convenient for operator to processing work piece according to the drawing.

• Enter and exit Calculator Function

In normal display state: press to enter calculator function In calculator state: press to exit calculator function

Calculating Example

Example 2: $345 + 2 \times \sin^{-1}(-0.5) = 285$

$$3 \rightarrow 4 \rightarrow 5 \rightarrow + \rightarrow 2 \rightarrow \times \rightarrow 0 \rightarrow 0 \rightarrow 5 \rightarrow \cancel{2} \rightarrow \sin \rightarrow = 0$$

NOTE:

- 1. If incorrect data is inputted, press (AC) to cancel and input again.
- 2. Error would occur when calculating incorrectly, such as "0" is used as divisor or proceeding arcsine when absolute value is more than 1. In this case, the message window will display "ERR..." You can cancel this error message by pressing and input data again.
- The absolute value of inputted data and calculated result should be in the range of 0.000001 to 9999999, otherwise it can't be displayed.

Transferring the Calculated Results to Selected Axis After calculating is finished, user can

press X_0 , Y_0 , Z_0 to transfer the calculated result to X,Y,Zaxis, then the window will display this value.

Transferring the Current Display Value in Window to Calculator In calculator state:

Press \bigcirc , \bigcirc to transfer the display value in X,Y,Z window to calculator.

Chapter 7 INITIAL SYSTEM

Function: Set various parameters according to actual operation.

SEL SYS	Setting the number of linear scale	
DIRECT	Setting positive direction for counter	
LIN COMP	Setting linear compensation	
R OR D	Radius/Diameter Mode	
Z DIAL	Setting Z axis Dial (DRO of 2axes, DRO of 3axes)	
RESOLUTE	Setting the resolution of scale	
SDM DIR	Setting the input mode of SDM	
EDM MODE	Setting EDM mode (DRO of EDM)	
DEEP.COMP	Enable/Disable the electrode compensation (DRO of	
	EDM)	
SLOP.MODE	Setting the slope machining mode (DRO of 2axes,	
	DRO of 3axes)	
STEP.MODE	Select the step mode in ARC processing (DRO of	
	2axes, DRO of 3axes)	
AXIS.TYPE	Setting the type of axis (DRO of 2axes, DRO of	
	3axes , DRO of 4axes)	
ANGE.MODE	Select the angle display mode (DRO of 2axes, DRO of	
	3axes , DRO of 4axes)	
ANGE.TYPE	Select the angle display type (DRO of 2axes, DRO of	
	3axes , DRO of 4axes)	
ALL CLS	Clearing all customer setting and return default	
	setting	
EXIT	Exit setup	

NOTE: what you have changed (except "ALL.CLS") would not been saved if you quit "SETUP" (initial system settings) without selecting "EXIT" item.

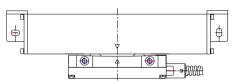
7.1 Enter/Exit Initial System Settings

Press to enter initial system setting after DRO powers on in 1 second: then "SETUP" displays in message window. Press or to select the item you want to change.

If you want to quit initial settings: press or • until "EXIT" appears in message window and press ENT.

7.2 Setting the type of DRO (SEL SYS)

Because DROs (two axes or three axes DRO) share the same software and their functions have some differences. DRO type must be set before use. ALL CLS has no effect on type of DRO.


"2" means the DRO type is 2 axes;

"3" means the DRO type is 3 axes;

7.3 Setting Positive Direction for Counter

If the linear scale is installed as the figure (facing operators):

Direction "0" means the display value will increase when scale moves

from right to left and decrease when scale moves from left to right.

Direction "1" means the display value will increase when scale moves from left to right and decrease when scale moves from right to left.

The counting direction of the scale is set by the erector, and the operator had better not change it.

Default: 0

7.4 Setting Linear Compensation (LIN COMP)

Definition

Linear error: There is always an error between actual measure value and standard value. If it is distributed around the scale travel linearly, the error is defined as linear error. For example, the scale valid length is 400mm.if the measure value is 400mm and the standard value is 400.040mm: There is a $\triangle L$ of 40µm. If 40µm is distributed around the scale linearly, there is a $\triangle L$ of 10µm when the scale travels 100mm; a $\triangle L$ of 20µm when the scale travels 200mm; a $\triangle L$ of 30µm when the scale travels 300mm.

Linear compensation: Compensate the linear error to make display value equals to standard value.

NOTE: The linear compensation is set by erector. Operator had better not change it, or the accuracy of linear scale will be worse.

Default coefficient: (

7.4.1 Manually compensate

The calculation of compensation coefficient:

(measurement - standard value) X 1000,000

coefficient = ______standard value

Example:

Measurement 400.000mm Standard value 400.040mm

Compensation value $(400.000 - 400.040) \times 1000,000 / 400 = -100$

Unit: μ m/m;

Set linear error compensation: X axis is 100; Y axis is 50; Z axis is –100.

STEPS:

- 1. Enter "SETUP", then press ▼ or until message window displays "LIN COMP".
- 2. Press Ent.

X window, Y window, Z window displays the former linear error compensation coefficient separately.

Message window displays "SEL AXIS" which indicates that the next step is to select axis.

3. Select axis

Press to select X axis.

NOTE: Press to select X axis. Data in X window flashes which indicating that you can input the linear error compensation for X axis;

Press to select Y axis. Data in Y window flashes which indicating that you can input the linear error compensation for Y axis;

Press to select Z axis. Data in Z window flashes which indicating that you can input the linear error compensation for Z axis;

Message window displays "ENTR.PPM", indicating it is waiting for a data to be inputted.

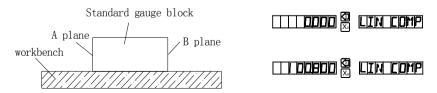
4. Press 1 0 0 ENT in turn;

If incorrect number is input, press [AC] to cancel and input again.

5. Input the error compensation coefficient for Y axis;

Press 5 0 ENT in turn;

Input the error compensation coefficient for Z axis;


Press 2 1 0 0 ½ ENT in turn.

6. Press ENT to confirm your setting and exit linear error compensation setup.

7.4.2 Automatic compensation

Operating steps (Take the X axis as example)

- 1. Touch-hold "S" button for 3 seconds, enter into the mode of X axis automatic compensation, the X axis blinks.
- 2. As shown in the figure, put the standard gauge blocks on top of the workbench, move X axis to align with the A plane, press the "Xo" key, and reset.

3. Move X axis to align with the B plane, press the "ENT" key, deputy window will show "SET OK", then the linear compensation of X axis finished

NOTE:

- Standard gauge block must be integer times of 10 mm (for example: 10 mm, 20 mm, 30 mm...). If not, please manually compensate.
- During automatic compensation, pressing the AC key can exit automatic compensation function, and the previous compensation value will not change.
- INC and SDM coordinates cannot automatically compensate, inch system cannot automatically compensate, only under the ABS and metric system, can enter into automatic compensation function.
- After compensation, values can be checked in internal parameter set.

7.5 Encoder compensation

Under the condition of number axis types are encoder:

After the encoder rotating a circle, if the angle is not 360° , but larger or smaller than 360° , you will need to compensate the encoder.

Operating steps (Take the X axis as example)

- 1. After the encoder rotating a circle, got a value of 359.8°.
- 2. Directly input 359.8°, compensation finished.

NOTE: Please refer to section 7.14 before setting encoder compensation value, set the number axis type into the right mode: the encoder

7.6 Toggle Between R/D Display Mode(R - D

MODE)

In common case, the display value is the distance between lathe tools and the coordinate origin. This display mode is called MODE R. When process cylinder given diameter measurement, diameter is the double distance between lathe tool and coordinate datum. The DRO will display the diameter in MODE D

"0": mode R.

"1": mode D.

Default mode: mode R.

7.7 Setting Z axis Dial(Z DIAL)

Z axis Dial should be set if Z axis is emulated for DRO of 2axes and only install linear scale for X, Y axis.

Z axis Dial means the distance the Z axis travels when screw runs a revolution.

Default value: 2.5mm

7.8 Setting the Resolution of Scale(RESOLUTE)

Different scale has different resolution. DRO can connect with 10 kinds of scale, and these resolutions are $0.05\mu m$, $0.1\mu m$, $0.2\mu m$, $0.5\mu m$, $1\mu m$, $2\mu m$, $5\mu m$, $10\mu m$, $20\mu m$, $50\mu m$. The resolution must be set to match the linear scale. This parameter is set by erector, operator had better not change it.

Default resolution: 5µm

Set the resolution of X axis as 1um.

STEPS:

2. Press ENTX window displays the former resolution of each axis separately. Message window displays "SEL AXIS", which indicates the next step is to select axis.

3. Select axis.

Press \bigcirc to change the resolution of X axis, then data in X windows flashes.

- 4. Press or to scroll through 0.05, 0.10, 0.20, 0.50, 1.00, 2.00, 5.00, 10.00, 20.00, 5 0.00. Press to select "1.00" when it appears and return "SEL.RXIS" state. Press of to cancel your selection.
- 5. Set the resolution of Y axis: Z axis by repeating step 3-4.
- 6. Press ENT to exit "RESOLUTE" setup.

7.9 Setting the EDM Mode (EDM MODE)

DRO of EDM provides 8 EDM modes. For detail information, please refer to chapter five. EDM mode must be set before EDM machining.

Default mode: MODE 1.

7.10 Setting the Input Mode in SDM Coordinate (SDM DIR)

DRO provides two inputting data mode in SDM coordinate:

MODE 0 (Normal inputting mode):

the data the DRO accept equals the inputted data;

MODE 1 (Special inputting mode):

the data the DRO accept equals the negative of the inputted number.

Default mode: MODE 0.

7.11 Enable/Disable EDM Depth Compensation

(DEEP.COMP)

In EDM machine, deep compensation is no necessary and this function disabled normally. It must be enabled before using it.

- 0: disable depth compensation.
- 1: Enable depth compensation.

Default setting: 0

7.13 Setting the Slope Machining Parameter (SLOP.MODE)

Parameter can be set in two ways in slope machining:

A Set the step of second axis (Z STEP) in one plane: for XY plane, set the step

DRO USER'S MANUAL

of Y axis; for YZ plane and XZ plane set the step of Z axis.

B Set MAX CUT.

MODE 1: MAX CUT;

MODE 0: Z STEP,

Default setting: the step of the second axis (Z STEP).

7.14 Toggle between Linear Scale and Rotary

Encoder(AXIS.TYPE)

Both linear scale and rotary encoder can be installed in any axis. The linear scale is used to measure distance; the rotary encoder is used to measure angle.

Default: linear scale.

Set rotary encoder in X axis.

AXISTYPE

STEPS:

- 2. Press ENT:

X, Y, Z window displays the former type.

"LINEA" means linear scale.

□ENCOJE SEL RKIS

"ENCODE" means rotary encoder.

Message window displays "SEL AXIS", which means the next step is to select axis.

- 3. SetX axis are installed with rotary
 - Press until display in X window is "ENCODE";
- 4. Press ENT to confirm your new set and exit.

Press [AC] to cancel your new set and exit.

7.15 Step Mode of ARC(STEP.MODE)

In ARC function, if the plane is not XY, you can setup the step mode. There are two modes. Mode 0 is Z STEP mode and Mode 1 is MAX CUT mode.

Default setting: Z STEP.

7.16 Angle Display Mode (ANGL.MODE)

DRO provides 3 angle display modes. In Mode 1, the angle is in the range of 0° to 360°; in mode 2, the angle is in the range of -360° to 360°; and in mode 3, the angle is in the range of -180° to 180°.

Default mode: MODE 1.

7.17 Angle display type(ANGL.TYPE)

There are two angle display types for DRO.

TYPE 0: indicate angle display is DD.

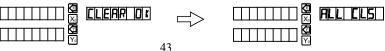
TYPE 1: indicate angle display is DMS.

Default value: TYPE 0 •

7.18 Load default setup (ALL CLS)

Function: Clear all data except the linear compensation and DRO type. DRO will load default setup for all parameters.

STEPS:


- Enter "SETUP", then press or until the message 1. window displays "ALL CLS";
- Press and message windows display "PASSWORD" 2 PASSMORI indicating the operator to input password. At this moment, there are two selections:
 - Press ac to quit "ALL.CLS";
 - Enter the correct password to clear all parameters and load default setup;
- 3. Input the password;

Input the Correct password to load default value.

The message window displays "WAITING", which means the clearing is

Return normal display state after loading default setup is finished. 4

The default setup for all parameters is as following:

- > Counting direction is mode 0;
- \triangleright The R/D is mode R;
- \triangleright Z DIAL = 2.5mm;
- \triangleright Resolution = 5 μ m;
- ➤ EDM mode is MODE 1;
- Relay mode is mode 0;
- Input mode in SDM as 0, display value = input value;
- > Deep compensation is disabled;
- Slope machining parameter is Z step;
- > Linear scale is installed for any axis;
- ARC machining parameter is Z step.
- ➤ Baud rate is 9600

Chapter 8 TROUBLE SHOOTING

The following are the easy solvent for troubleshooting. If they can not work: please contact with distributor for more service.

Trouble	Possible Reason	Solvent
No display	A The DRO isn't powered.	A Check the fuse is OK or not. B Check the socket is loose.
	B AC power voltage is not in	C Check the input power voltage is in
	the range of 100V to 240V.	the range of 100V to 240V.
Cover is	A Poor grounding is float	Check the lathe and DRO are well
charged	B Leakage of electricity	grounded.
Display value is	A Improper resolution	A Set proper resolution.
doubled	B Display mode D	B Set display mode R.
	A Poor contact of scale	
No counting	B No scale signal output	Exchange scale and check again.
	C Useless of counting function	
Display		A Clear system.
value is in	Memory is disorder	B Check compensation is proper.
disorder		
	A Poor precision of lathe	A Repair lathe.
	B Too fast run speed of the	B Reduce the move speed of scale.
	lathe	C Reinstall scale.
Erroneous	C Proper scale precision	D Set proper resolution.
counting	D Improper resolution is set	E Set proper linear error compensation.
	E Improper linear error	F Repair or exchange linear scale.
	compensation	
	F Useless of scale	